CS 4100: Introduction to Al

Wayne Snyder
Northeastern University

Lecture 5: Resolution Theorem Proving in First-Order Logic

—likes(John, Peanuts) — food(x) V likes(John, x)

\ / { x/Peanuts }

— food(Peanuts) — eats(y, z) V killed(y) V food(z)

\ / { z/Peanuts }

— eats(y, Peanuts) V killed(y) eats (Anil, Peanuts)
{ y/Anil }

Killed(Anil) — alive(k) V — killed(k)

\ / {i/Anil }

— alive(Anil) alive(Anil)

{ } Hence proved.



spqQeemtTIoN - ()
First-Order Logic: Semantics kel QaF 9.C
T b e

From last time.....

Definition 3.4 L( 3 ( k)[ w>

e An atomic formula p(ty, ..., t, ) is true (or valid) under the interpretation I
if, after interpretatm and evaluation of all terms 7, ..., t, and interpre- = il
tation of the predicate p through the n-place relation r, it holds that

(I(tr), .., 1(ta)) € 1.

e The truth of quantifierless formulas follows from the truth of atomic
formulas—as in propositional calculus—through the semantics of the

logical operators defined in Table 2.1 on page 25.

e A formula Vx F is true under the interpretation I exactly when it is true \vly F
given an arbitrary change of the interpretation for the variable x (and only
for x)

e A formula dx F is true under the interpretation I exactly when there is an X € (é@
interpretation for x which makes the formula true.

The definitions of semantic equivalence of formulas, for the concepts satis- -j( F
— X

fiable, true, unsatisfiable, and model, along with semantic entailment (Defi-
nitions 2.4, 2.5, 2.6) carry over unchanged from propositional calculus to

predicate logic. X e LL

®



First-Order Logic: Semantics

KarenA. FranzA. \FMOW LGk
[ | G-RARLT

Anne A. Oscar A. Mary B. Oscar B.

i N

Henry A. Eve A. Isabelle A. Clyde B.

KB % female(karen) N\ female(anne) N female(mary

We) A female(isab.elle) - <§

A child(oscar, karren,fran;) A child(mary, karen, franz)
A child(eve, anne, oscar) N child(henry, anne, oscar)
A child(isabelle, anne, oscar) N child(clyde, mary. oscarb) — —

A (Vx Vy Vzchild(® y, 2) = child(x, z, y) E—

A (va descendant{3 (V)

hild(x, u, v) A descendant(u, y))).




First-Order Logic: Equivalent Formulae

From last time: Equivalence of formulae in FOL:

In addition to all the rules for equivalence of propositional formulae, we also w
have the following rules involving quantifiers:

Vx F = —-Ex ~E)
VxVy F = VywWx F
- _—
dxdy F = dydx F

Also note that you can not exchange the order of different quantifiers:

AV =




L \__// U\' %j/ L2,
First-Order Logic: Semantics e VAX



First-Order Logic: Semantics Oj:sﬁ BSsron

Equality 1s a special case of a relation which is always given the
natural interpretation, using the axioms:

p(x TR

Vx (reflexivity) '/ —_—
Vx Vy (symmetry) v (3.1)
Vx Vy Vz (transitivity). ¢~

’;(kl ‘V)

Vx Vyx =y = p(x) < p(y) (substitution axiom).
~ e

Vx Vyx =y = f(x) =f(y) (substitution axiom)

—— ——

X # O] P L. v
/ CEn gzzsﬂﬁ%@



First-Order Logic: Semantics



First-Order Logic: Equivalent Formulae

From last time: Equivalence of formulae in FOL:

In addition to all the rules for equlvalence of prop0s1t10nal formulae, we also

IV

DATLE 72 TuS

VxVy F = VWxF GET M0 of
WRR U BEew /)

RSy F=——m P —
C M R FaC

Also note that you can not exchange the order of different quantifiers:

VxB§F # HBYxF




First-Order Logic: Equivalent Formulae
As we shall see, Resolution theorem proving in FOL requires that the formula does not
contain existential quantifiers. Fortunately, a technique called Skolemization can be

used to remove existentials without changing the satisfiability of the formula.

Skolemization involves substituting a new constant for the existentially quantified (N

variable in the formula: WITRESS =k =
v S
= Fl...c...c...]F

(i.e., whether it is satisfiable or unsatisfiable) is:

@)_\3 Fl.%..%..]

if and only 1f

@z F[...@...@...]

where J is the same as || except that it provides an interpretation for the new constant.

This is always possible because of the definition of 3.
/_\

—



Example:




First-Order Logic: Equivalent Formulae

Skolemization can also be done when an existentially-quantified variable occurs inside
the scope of a universal quantifier:
p q r Al

(Dk veayFloyvod A g

)

)
= VX FLf00- 001 o ST Tt

where J is the same as || except that it provides an interpretation for the Mction

symbo This function "chooses" an value for y for each of the values of x. Since the
formula says that you can always do this, the function f can always be given an

interpretation in J .
the =t y. y<x
Z-

if and only 1f




First-Order Logic: Equivalent Formulae

Example:



First-Order Logic: Equivalent Formulae

To summarize:  Any set of formulae S can be transformed into a se@where there

are no existential quantifiers, where S 1s s satisfiable if and only if S' is satisfiable.
A —— a— —

Why i1s this important ?

_Resolution theorem proving can be performed in FOL for sets of universally-
quantified formulae (no 3's) in conjunctive normal form:

o) ,\/ ")

SV

{
Vxq, ..., xx (L1 V Ly V -E}\V...(Ll VLV -V L, YA AY...(LiVLyV--VL,))
> —_———

where each L; 1s an atomic formula (predicate or negation of a predicate). As usual, we
represent a CNF using sets of literals, where now all variables are
quantified:

\+ 3<f~ Y
{ {L19L2a"'9L } {LlaLZ’ ’ Lmz} {LlaLZ,
o )//f

Full disclosure: When using resolution in FOL, we hardly ever use Skolemization,
instead writing our set of formulae without using 3. Whew !




First-Order Logic: Resolution

The ONLY thing that changes in resolution when we go to FOL is that we have to
deal with a new form of the resolution rule. Briefly, we have to account for when
precisely there is a conflict between two literals of opposite sign.

Some examples will clarify the problem. NER {{P;sm_u;(c‘/ Cb

Example 1

Everyone loves logic.
Prove that omar loves logic.




QUBSTEITTIoA . X —drR SR
First-Order Logic: Resolution

Example 2
Everyone in CS4100 loves loglc vx. InCS4100(x) — LovesLoglc(x)
Omar 1s in CS4100 InCS4100(0mar)
Prove that omar loves logic. LovesLogic(omar)

-
Vx(InCS4100(X) XLovesLogic(x)) A InCS4100(0mar) A — LovesLogic(omar)

{ InCS4100(X LovesLogic(x) }, InCS4100(oma }, {—lLovesLoglc(omar)} }

%—-I«!CE%OO( OHAR Lawsg.(,«@c(am { %HM’}
% Q,A,UE§L46}CCO”{M %




First-Order Logic: Resolution

Example 3
All of Omar's friends love logic. Vx. Friend(omar, x) — LovesLogic(x)
Ali 1s friends with everyone. V. Friend(y, —[1) o
Prove that W loves logic. LovesLogic(amar)

LI
Vx(Fr1end(omar X) - LovesLoglc(x)) Friend(y, all) A — LovesLoglc(%

r1end(0mar x)| LovesLogic(x (x) k;

riend(y, ali) },

{ = LovesLogic(gyz? _‘) } }

>
~




First-Order Logic: Resolutlon @q: XUL)/ = [W

Example 3b (with clash of variable names) Rew ArtE

§eopl
All of Omar's friends love logic. VA Friend(omar, x)) — LovesLogic(x])
Ali is friends with everyone. Vx2 Friend (32ali)
Prove that giyar loves logic. LovesLogic(efddr)
A AL

P
Vx(Friend(omar, x) — LovesLogic(x])) A Friend(xali) A — LovesLogic(emar)

Al
{ {— Friend(omar, x), LovesLogic(x) }, { Friend(>zali) }, { = LovesLogic(emat) } }

Al (OMM( Xl) H F«:ce.uo(awm ,B—a uw(..-B

Frsean( 0 A \
> = (kmw

Wl x=z X5
Ba:am PESOLUR 2. S Sef - -

o R N ~ N




WNEMFTE vl U S,

First-Order Logic: Resolution

Example 3¢ (with variables renamed)

All of Omar's friends love logic. Vx1. Friend(omar, x1) — LovesLogic(x1)
Ali is friends with everyone. Vx2. Friend(x2, ali)

Prove that omar loves logic. LovesLogic(omar)

Vx(Friend(omar, x1) — LovesLogic(x1)) A Friend(x2,ali) A = LovesLogic(omar)

{ {= Friend(omar, x1), LovesLogic(x1) }, { Friend(x2, ali) }, { = LovesLogic(omar) } }



First-Order Logic: Resolution

Example 4 (with unification)

m(x) = mother of x (everyone has a mother) 95 2.

=20

Everyone knows their mother. Vx. Knows(x, m(x)) ~EXT
Prove that henry knows someone. W Q\
.—,@ = — 3dx.Knows(henry, x)

Vx.— Knows(henry, x)
o

\% ‘v’x(Knows(X, m(x)) A — Knows(henry, x)
\R¥® &

< { { Knows()g}m(x’ﬂ) }, {= Knows(henry,xd. } }
O»Qﬂ?{ '
N &V%ows(%)“{,()l\.s

Unfortunately, unification can get much more complicated..... Ywow§ (HE""Y> X >

X flonrivmafheen)




<. 1/4/(,‘("5AIRP\§

First-Order Logic: Unification
UMS: X yla( w

U Y
Unify the two terms: P(f(g(x)),y,z) P(u, 4, f(u))

/30

Y569

Lol RN

L L L \
@( 4:(5(@\/ &(j @LQ % Vg@\/ %@\/ ?t(ir\(j@>
FA—?@))

/

DNTFLS]

UBEAN 00BSC pDAUATFRITCATI o Cf»:bg_>
s s N\ e o



(x P ~ ) ohBaS
o R f J

First-Order Logic: Resolution Rule for FOL

Definition 3.7 Two literals are called unifiable if there is a substitution ¢ for
all variables which makes the literals equal. Such a ¢ is called a wunifier.
A unifier is called the most general unifier (MGU) if all other unifiers can be
obtained from it by substitution of variables.

Definition 3.8 The resolution rule for two clauses in conjunctive normal

form reads
@‘ %‘V GiYis=NIC ) a(B) = a(B')
(G(ﬂl) V---Va(A,) Va(C)V---Va(C,)) ’ (3.6)

\-==i ———

where ¢ 1s the MGU of B and B'.




First-Order Logic: Unification



First-Order Logic: Equivalent Formulae

Example 5:

. John likes all kind of food.

. Apple and vegetable are food

. Anything anyone eats and not killed is food.
. Anil eats peanuts and still alive

. Harry eats everything that Anil eats.

Prove by resolution that:

. John likes peanuts.



First-Order Logic: Semantics

Step-1: Conversion of Facts into FOL
In the first step we will convert all the given statements into its first order logic.

: . . V¥x: food likes(John,
a. John likes all kind of food. 8. Vx:foodix)-> likes{iohn, x)
b. food(Apple) A food(vegetables)

b. Apple and vegetable are food

. . ) c. VxVy: eats(x, y) A = killed(x) = food(y)
c. Anything anyone eats and not killed is food.

fa—— d. eats (Anil, Peanuts) A alive(Anil).
d. Anil eats peanuts and still alive
) e. Vx:eats(Anil, x) = eats(Harry, x)
e. Harry eats everything that Anil eats. ) .

Prove by resolution that:

=

f. Vx: —killed(x) = alive(x) }added predicates.

g. Vx: alive(x) —>— killed(x)

f. John likes peanuts. h. likes(John, Peanuts)



First-Order Logic: Semantics

Step-2: Conversion of FOL into CNF

o Eliminate all implication () and rewrite

a. Vx:food(x) - likes(John, x) a. vx - food(x) V likes(John, X)

b. food(Apple) A food(vegetables) b. food(Apple) A food(vegetables)

c. VxVy: eats(x, y) A = killed(x) - food(y) c. VX vy - [eats(x, y) A = killed(x)] V food(y)
d. eats (Anil, Peanuts) A alive(Anil). d. eats (Anil, Peanuts) A alive(Anil)

e. Vx:eats(Anil, x) = eats(Harry, x) e. vx - eats(Anil, x) V eats(Harry, x)

f. WVx: —killed(x) = alive(x) | added predicates. f. vx= [-killed(x) ] V alive(x)

g. Vx: alive(x) >— killed(x)} g. vx - alive(x) V - killed(x)

h. likes(John, Peanuts) h. likes(John, Peanuts).



First-Order Logic: Semantics

. Vx: food(x) - likes(John, x)

. food(Apple) A food(vegetables)

Vx Vy: eats(x, y) A = killed(x) = foodly)
. eats (Anil, Peanuts) A alive(Anil).

. Vx : eats(Anil, x) = eats(Harry, x)

Vx: — killed(x) = alive(x) }added predicates.

. V¥x: alive(x) —->— killed(x)

. likes(John, Peanuts)

o Move negation (-)inwards and rewrite

a.
b.
C.

d.

vXx = food(x) V likes(John, x)
food(Apple) A food(vegetables)
vX vy = eats(x, y) V killed(x) V food(y)

eats (Anil, Peanuts) A alive(Anil)

. ¥X = eats(Anil, x) V eats(Harry, x)

vXx =killed(x) ] V alive(x)

. vXx = alive(x) V = killed(x)

. likes(John, Peanuts).



First-Order Logic: Semantics

o Rename variables or standardize variables

a. Vx:food(x) = likes(John, x)

b. food(Apple) A food(vegetables)

c. VxVy: eats(x, y) A = killed(x) - food(y)
d. eats (Anil, Peanuts) A alive(Anil).

e. Vx:eats(Anil, x) = eats(Harry, x)

f. Vx:—killed(x) = alive(x) }added predicates.

g. Vx: alive(x) -— killed(x)

h. likes(John, Peanuts)

a.
b.

C.

vXx - food(x) V likes(John, x)
food(Apple) A food(vegetables)

vy vz - eats(y, z) V killed(y) V food(z)

. eats (Anil, Peanuts) A alive(Anil)

. Yw- eats(Anil, w) V eats(Harry, w)

vg —.killed@ 1V alive@

. vk~ alivefk) V - killed ¢¢)

. likes(John, Peanuts).



First-Order Logic: Semantics

o Drop Universal quantifiers.
In this step we will drop all universal quantifier since all the statements are not implicitly quantified so we
don't need it.

a. -~ food(x) V likes(John, x)

b. food(Apple)

c. food(vegetables)

d. ~ eats(y, z) V killed(y) V food(z)
e. eats (Anil, Peanuts)

f. alive(Anil)

g. - eats(Anil, w) V eats(Harry, w)
h. killed(g) V alive(qg)

i. = alive(k) V = killed(k)

j. likes(John, Peanuts).



First-Order Logic: Semantics

(/

R ﬂlikes!John, Peanuts) — food(z() V likes(John, x)

{ x/Peanuts }
~———

—.food anuts) — eats(y, z) V killed(y) V food(z)
—_—

{ z/Peanuts }

— eats(y, Peanuts) V |IIed(y) eats (Anil, Peanuts)
{ y/Anil }
|IIed(An — alive(k) V — killed(k)
\TL {k/Anil }
el
— alive(Anil) alive(Anil)

{Resaorrad

ehce proved.

H
7




1—\2 0F S



